3.3.21 \(\int \tanh (x) (a+b \tanh ^2(x))^{3/2} \, dx\) [221]

3.3.21.1 Optimal result
3.3.21.2 Mathematica [A] (verified)
3.3.21.3 Rubi [A] (verified)
3.3.21.4 Maple [B] (verified)
3.3.21.5 Fricas [B] (verification not implemented)
3.3.21.6 Sympy [A] (verification not implemented)
3.3.21.7 Maxima [F]
3.3.21.8 Giac [B] (verification not implemented)
3.3.21.9 Mupad [B] (verification not implemented)

3.3.21.1 Optimal result

Integrand size = 15, antiderivative size = 63 \[ \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=(a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2} \]

output
(a+b)^(3/2)*arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))-(a+b)*(a+b*tanh(x)^ 
2)^(1/2)-1/3*(a+b*tanh(x)^2)^(3/2)
 
3.3.21.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.94 \[ \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=(a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\frac {1}{3} \sqrt {a+b \tanh ^2(x)} \left (4 a+3 b+b \tanh ^2(x)\right ) \]

input
Integrate[Tanh[x]*(a + b*Tanh[x]^2)^(3/2),x]
 
output
(a + b)^(3/2)*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - (Sqrt[a + b*Tan 
h[x]^2]*(4*a + 3*b + b*Tanh[x]^2))/3
 
3.3.21.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.11, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 26, 4153, 26, 353, 60, 60, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -i \tan (i x) \left (a-b \tan (i x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \tan (i x) \left (a-b \tan (i x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -i \int \frac {i \tanh (x) \left (b \tanh ^2(x)+a\right )^{3/2}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 26

\(\displaystyle \int \frac {\tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {1}{2} \int \frac {\left (b \tanh ^2(x)+a\right )^{3/2}}{1-\tanh ^2(x)}d\tanh ^2(x)\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left ((a+b) \int \frac {\sqrt {b \tanh ^2(x)+a}}{1-\tanh ^2(x)}d\tanh ^2(x)-\frac {2}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\right )\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {1}{2} \left ((a+b) \left ((a+b) \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh ^2(x)-2 \sqrt {a+b \tanh ^2(x)}\right )-\frac {2}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left ((a+b) \left (\frac {2 (a+b) \int \frac {1}{\frac {a+b}{b}-\frac {\tanh ^4(x)}{b}}d\sqrt {b \tanh ^2(x)+a}}{b}-2 \sqrt {a+b \tanh ^2(x)}\right )-\frac {2}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \left ((a+b) \left (2 \sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-2 \sqrt {a+b \tanh ^2(x)}\right )-\frac {2}{3} \left (a+b \tanh ^2(x)\right )^{3/2}\right )\)

input
Int[Tanh[x]*(a + b*Tanh[x]^2)^(3/2),x]
 
output
((-2*(a + b*Tanh[x]^2)^(3/2))/3 + (a + b)*(2*Sqrt[a + b]*ArcTanh[Sqrt[a + 
b*Tanh[x]^2]/Sqrt[a + b]] - 2*Sqrt[a + b*Tanh[x]^2]))/2
 

3.3.21.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.21.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(472\) vs. \(2(51)=102\).

Time = 0.06 (sec) , antiderivative size = 473, normalized size of antiderivative = 7.51

method result size
derivativedivides \(-\frac {\left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 \left (a +b \right ) b -4 b^{2}\right ) \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )\right )}{2}-\frac {\left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 \left (a +b \right ) b -4 b^{2}\right ) \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )\right )}{2}\) \(473\)
default \(-\frac {\left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 \left (a +b \right ) b -4 b^{2}\right ) \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )\right )}{2}-\frac {\left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 \left (a +b \right ) b -4 b^{2}\right ) \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )\right )}{2}\) \(473\)

input
int(tanh(x)*(a+b*tanh(x)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/6*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(3/2)-1/2*b*(1/4*(2*b*(tanh(x)- 
1)+2*b)/b*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+1/8*(4*(a+b)*b-4*b^2 
)/b^(3/2)*ln((b*(tanh(x)-1)+b)/b^(1/2)+(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+ 
b)^(1/2)))-1/2*(a+b)*((b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+b^(1/2)* 
ln((b*(tanh(x)-1)+b)/b^(1/2)+(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))- 
(a+b)^(1/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b 
*(tanh(x)-1)+a+b)^(1/2))/(tanh(x)-1)))-1/6*(b*(1+tanh(x))^2-2*b*(1+tanh(x) 
)+a+b)^(3/2)+1/2*b*(1/4*(2*b*(1+tanh(x))-2*b)/b*(b*(1+tanh(x))^2-2*b*(1+ta 
nh(x))+a+b)^(1/2)+1/8*(4*(a+b)*b-4*b^2)/b^(3/2)*ln((b*(1+tanh(x))-b)/b^(1/ 
2)+(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)))-1/2*(a+b)*((b*(1+tanh(x)) 
^2-2*b*(1+tanh(x))+a+b)^(1/2)-b^(1/2)*ln((b*(1+tanh(x))-b)/b^(1/2)+(b*(1+t 
anh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))-(a+b)^(1/2)*ln((2*a+2*b-2*b*(1+tanh( 
x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)) 
))
 
3.3.21.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 910 vs. \(2 (51) = 102\).

Time = 0.37 (sec) , antiderivative size = 2385, normalized size of antiderivative = 37.86 \[ \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=\text {Too large to display} \]

input
integrate(tanh(x)*(a+b*tanh(x)^2)^(3/2),x, algorithm="fricas")
 
output
[1/12*(3*((a + b)*cosh(x)^6 + 6*(a + b)*cosh(x)*sinh(x)^5 + (a + b)*sinh(x 
)^6 + 3*(a + b)*cosh(x)^4 + 3*(5*(a + b)*cosh(x)^2 + a + b)*sinh(x)^4 + 4* 
(5*(a + b)*cosh(x)^3 + 3*(a + b)*cosh(x))*sinh(x)^3 + 3*(a + b)*cosh(x)^2 
+ 3*(5*(a + b)*cosh(x)^4 + 6*(a + b)*cosh(x)^2 + a + b)*sinh(x)^2 + 6*((a 
+ b)*cosh(x)^5 + 2*(a + b)*cosh(x)^3 + (a + b)*cosh(x))*sinh(x) + a + b)*s 
qrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^ 
7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2 
*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 
 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)* 
cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 + 
30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 
10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*si 
nh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x 
)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 
 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 
+ sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3*a^2 
*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3* 
a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x) 
^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 
 + 2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)...
 
3.3.21.6 Sympy [A] (verification not implemented)

Time = 6.97 (sec) , antiderivative size = 165, normalized size of antiderivative = 2.62 \[ \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=- a \left (\begin {cases} \frac {2 \left (\frac {b \sqrt {a + b \tanh ^{2}{\left (x \right )}}}{2} + \frac {b \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\left (x \right )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}}\right )}{b} & \text {for}\: b \neq 0 \\\frac {\sqrt {a} \log {\left (2 \tanh ^{2}{\left (x \right )} - 2 \right )}}{2} & \text {otherwise} \end {cases}\right ) - b \left (\begin {cases} \frac {2 \left (\frac {b^{2} \sqrt {a + b \tanh ^{2}{\left (x \right )}}}{2} + \frac {b^{2} \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\left (x \right )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}} + \frac {b \left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}{6}\right )}{b^{2}} & \text {for}\: b \neq 0 \\\sqrt {a} \left (\frac {\log {\left (\tanh ^{2}{\left (x \right )} - 1 \right )}}{2} + \frac {\tanh ^{2}{\left (x \right )}}{2}\right ) & \text {otherwise} \end {cases}\right ) \]

input
integrate(tanh(x)*(a+b*tanh(x)**2)**(3/2),x)
 
output
-a*Piecewise((2*(b*sqrt(a + b*tanh(x)**2)/2 + b*(a + b)*atan(sqrt(a + b*ta 
nh(x)**2)/sqrt(-a - b))/(2*sqrt(-a - b)))/b, Ne(b, 0)), (sqrt(a)*log(2*tan 
h(x)**2 - 2)/2, True)) - b*Piecewise((2*(b**2*sqrt(a + b*tanh(x)**2)/2 + b 
**2*(a + b)*atan(sqrt(a + b*tanh(x)**2)/sqrt(-a - b))/(2*sqrt(-a - b)) + b 
*(a + b*tanh(x)**2)**(3/2)/6)/b**2, Ne(b, 0)), (sqrt(a)*(log(tanh(x)**2 - 
1)/2 + tanh(x)**2/2), True))
 
3.3.21.7 Maxima [F]

\[ \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=\int { {\left (b \tanh \left (x\right )^{2} + a\right )}^{\frac {3}{2}} \tanh \left (x\right ) \,d x } \]

input
integrate(tanh(x)*(a+b*tanh(x)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*tanh(x)^2 + a)^(3/2)*tanh(x), x)
 
3.3.21.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 662 vs. \(2 (51) = 102\).

Time = 1.02 (sec) , antiderivative size = 662, normalized size of antiderivative = 10.51 \[ \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=\frac {1}{2} \, {\left (a + b\right )}^{\frac {3}{2}} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right ) - \frac {1}{2} \, {\left (a + b\right )}^{\frac {3}{2}} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right ) - \frac {{\left (a^{2} + 2 \, a b + b^{2}\right )} \log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {8 \, {\left (3 \, {\left (a b + b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{5} + 3 \, {\left (3 \, a b + b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{4} \sqrt {a + b} + 2 \, {\left (3 \, a^{2} b - 6 \, a b^{2} - 5 \, b^{3}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{3} - 6 \, {\left (a^{2} b + 4 \, a b^{2} + 3 \, b^{3}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} \sqrt {a + b} - 3 \, {\left (3 \, a^{3} b + a^{2} b^{2} - 15 \, a b^{3} - 13 \, b^{4}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} - {\left (3 \, a^{3} b - 9 \, a^{2} b^{2} + 5 \, a b^{3} + 17 \, b^{4}\right )} \sqrt {a + b}\right )}}{3 \, {\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} + a - 3 \, b\right )}^{3}} \]

input
integrate(tanh(x)*(a+b*tanh(x)^2)^(3/2),x, algorithm="giac")
 
output
1/2*(a + b)^(3/2)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x 
) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b))) - 1/2*(a + b)^(3/2) 
*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 
 2*b*e^(2*x) + a + b) - sqrt(a + b))) - 1/2*(a^2 + 2*a*b + b^2)*log(abs(-( 
sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2* 
x) + a + b))*(a + b) - sqrt(a + b)*(a - b)))/sqrt(a + b) - 8/3*(3*(a*b + b 
^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b* 
e^(2*x) + a + b))^5 + 3*(3*a*b + b^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x 
) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^4*sqrt(a + b) + 2*(3*a 
^2*b - 6*a*b^2 - 5*b^3)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) 
+ 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^3 - 6*(a^2*b + 4*a*b^2 + 3*b^3)*(sqr 
t(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) 
+ a + b))^2*sqrt(a + b) - 3*(3*a^3*b + a^2*b^2 - 15*a*b^3 - 13*b^4)*(sqrt( 
a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + 
a + b)) - (3*a^3*b - 9*a^2*b^2 + 5*a*b^3 + 17*b^4)*sqrt(a + b))/((sqrt(a + 
 b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + 
 b))^2 + 2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) 
 - 2*b*e^(2*x) + a + b))*sqrt(a + b) + a - 3*b)^3
 
3.3.21.9 Mupad [B] (verification not implemented)

Time = 4.10 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.02 \[ \int \tanh (x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx=\mathrm {atanh}\left (\frac {{\left (a+b\right )}^{3/2}\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}}{a^2+2\,a\,b+b^2}\right )\,{\left (a+b\right )}^{3/2}-\left (a+b\right )\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}-\frac {{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{3/2}}{3} \]

input
int(tanh(x)*(a + b*tanh(x)^2)^(3/2),x)
 
output
atanh(((a + b)^(3/2)*(a + b*tanh(x)^2)^(1/2))/(2*a*b + a^2 + b^2))*(a + b) 
^(3/2) - (a + b)*(a + b*tanh(x)^2)^(1/2) - (a + b*tanh(x)^2)^(3/2)/3